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Leiomyosarcoma (LMS) is an aggressive mesenchymal malignancy with few therapeutic

options. The mechanisms underlying LMS development, including clinically actionable genetic

vulnerabilities, are largely unknown. Here we show, using whole-exome and transcriptome

sequencing, that LMS tumors are characterized by substantial mutational heterogeneity,

near-universal inactivation of TP53 and RB1, widespread DNA copy number alterations

including chromothripsis, and frequent whole-genome duplication. Furthermore, we detect

alternative telomere lengthening in 78% of cases and identify recurrent alterations in telo-

mere maintenance genes such as ATRX, RBL2, and SP100, providing insight into the genetic

basis of this mechanism. Finally, most tumors display hallmarks of “BRCAness”, including

alterations in homologous recombination DNA repair genes, multiple structural rearrange-

ments, and enrichment of specific mutational signatures, and cultured LMS cells are sensitive

towards olaparib and cisplatin. This comprehensive study of LMS genomics has uncovered

key biological features that may inform future experimental research and enable the design of

novel therapies.
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Leiomyosarcomas (LMS) are malignant tumors of smooth-
muscle origin that occur across age groups, accounting for
10% of all soft-tissue sarcomas, and most commonly involve

the uterus, retroperitoneum, and large blood vessels. Long-term
survival in LMS patients may be achieved through surgical
excision and adjuvant radiotherapy. However, local recurrence
and/or metastasis develop in approximately 40% of cases1.
Patients with disseminated LMS are usually incurable, as reflected
by a median survival after development of distant metastases of
12 months2, and cytotoxic chemotherapy is generally adminis-
tered with palliative intent.

Cytogenetic studies have shown that LMS are genetically
complex, often exhibiting chaotic karyotypes, and no pathogno-
monic chromosomal rearrangements have been detected. More
recent investigations employing microarray technologies and
targeted sequencing approaches have provided insight into
recurrent genetic features of LMS and associated histopathologic
characteristics and clinical outcomes3–5. However, systematic
genome- and transcriptome-wide investigations of LMS using
next-generation sequencing technology are lacking, and clinically
actionable genetic vulnerabilities remain unknown.

In this study, we have used whole-exome and RNA sequencing
to characterize the molecular landscape of LMS. We identify a
perturbed tumor suppressor network, widespread genomic
instability, and alternative lengthening of telomeres (ALT) as
hallmarks of this disease. Furthermore, our findings uncover
genomic imprints of defective homologous recombination repair
(HRR) of DNA double-strand breaks as potential liability of LMS
tumors that could be exploited for therapeutic benefit, and pro-
vide a map for future studies of additional genetic alterations or
deregulated cellular processes as entry points for molecularly
targeted interventions.

Results
Mutational landscape of LMS. We performed whole-exome
sequencing and transcriptome sequencing in a cohort of 49
patients with LMS (non-uterine, n = 39; uterine, n = 10; newly
diagnosed, n = 20; locally recurrent, n = 6; metastatic, n = 23)
(Supplementary Data 1). We detected a total of 14,259 (median,
223; range, 79–1101) somatic single-nucleotide variants (SNVs),
of which 2522 (median, 39; range, 10–226) were non-silent, and
297 somatic small insertions/deletions (indels; median, 3; range,
0–50) (Fig. 1a and Supplementary Data 1). The median somatic
mutation rate was 3.09 (range, 1.05–14.76) per megabase (Mb) of
target sequence, comparable to the rates observed in clear-cell
kidney cancer or hepatocellular carcinoma6. Recurrence analysis
using MutSigCV7 identified TP53 (49%), RB1 (27%), and ATRX
(24%) as significantly mutated genes (q< 0.01, Benjamini
−Hochberg correction) (Fig. 1a and Supplementary Figure 1a).
TP53 mutations clustered in the DNA binding and tetrameriza-
tion motifs, whereas those affecting RB1 and ATRX were dis-
tributed across the entire protein (Fig. 1b). SNVs and indels were
also present in other established cancer genes8, albeit at low
frequencies (Fig. 1a, Supplementary Figure 1a, and Supplemen-
tary Data 1). Network analysis of the integrated collection of
SNVs and indels using HotNet29 identified two significantly
mutated subnetworks centered on TP53 and RB1 as “hot” nodes
(P< 0.05, two-stage multiple hypothesis test and 100 permuta-
tions of the global interaction network), which encompassed
genes related to DNA damage response and telomere main-
tenance (TOPORS, ATR, TP53BP1, TELO2), cell cycle and
apoptosis regulation (PSDM11, CASP7, XPO1), epigenetic reg-
ulation (HIST3H3, SETD7, KMT2C), MAPK signaling and posi-
tive regulation of muscle cell proliferation (MAPK14, DUSP10,
MEF2C), regulation of mRNA stability (ZFP36L1, SRSF5), and

PI3K-AKT signaling (MTOR, LAMA4) (Fig. 1c). These data
showed that LMS tumors exhibit substantial mutational hetero-
geneity and are possibly driven by loss of TP53 and/or RB1
function together with a diverse spectrum of less commonly
mutated “gene hills”, which may be different for each patient10.

Widespread DNA copy number changes and chromothripsis in
LMS. We next performed genome-wide analysis of somatic copy-
number alterations (CNAs) and identified recurrent losses in
regions of chromosomes 10, 11q, 13, 16q, and 17p13 (comprising
TP53) and recurrent gains of chromosome 17p12 (affecting
MYOCD) (Fig. 2a, b and Supplementary Figure 1b), consistent
with previous molecular cytogenetic studies5, 11. Most recurrently
mutated genes were additionally targeted by CNAs (Supple-
mentary Figure 1a). Furthermore, multiple cancer drivers as well
as components of the CINSARC prognostic gene expression
signature12 were affected by CNAs in at least 30% of cases,
including genes encoding tumor suppressors (PTEN, RB1, TP53),
DNA repair proteins (BRCA2, ATM), chromatin modifiers
(RBL2, DNMT3A, KAT6B), cytokine receptors (ALK, FGFR2,
FLT3, LIFR), and transcriptional regulators (PAX3, FOXO1,
CDX2, SUFU) (Fig. 2a). We also detected regions of significant
focal gains and losses using GISTIC2.013 (q< 0.25, Benjamini
−Hochberg correction) (Fig. 2b and Supplementary Data 1), and
clustering of broad and focal CNAs demonstrated that individual
tumors had highly rearranged genomes (Supplementary Fig-
ure 1b). In addition, chromothripsis14 was present in 17 of
49 samples (35%), with the number of affected chromosomes per
tumor ranging from one to five (Fig. 2c and Supplementary
Data 1). Thus, variable patterns of widespread CNA and localized
chromosome shattering further add to the genomic complexity of
LMS.

Transcriptomic characterization of LMS. We next sought to
delineate biologically relevant subgroups of LMS defined by dif-
ferent gene expression profiles. Both unsupervised hierarchical
clustering (Fig. 3a) and principal component analysis (Supple-
mentary Figure 2a) revealed three distinct subgroups of patients.
Gene ontology analysis using DAVID on the top 100 highly
variable genes showed greater than tenfold enrichment (false
discovery rate< 0.05) of biological processes related to platelet
degranulation, complement activation, and metabolism for sub-
group 1; and muscle development and function and regulation of
membrane potential for subgroup 2. Subgroup 3 was character-
ized by low expression of genes separating subgroups 1 and 2, but
showed medium to high levels of genes associated with myofibril
assembly, muscle filament function, and cell−cell signaling com-
mon to subgroups 1 and 2 (Fig. 3a and Supplementary Data 1).
Increased expression of ARL4C or CASQ2 and LMOD1, respec-
tively, indicated that subgroups 2 and 3 correspond to previously
identified LMS subtypes II and I (Supplementary Figure 2b)15.

Biallelic inactivation of TP53 and RB1 in LMS. Further analysis
of transcriptome data, coupled with RT-PCR validation, uncov-
ered high-confidence fusion transcripts arising from chromoso-
mal rearrangements in 34 of 37 cases (total number of fusions, n
= 183; range, n = 1–29; Fig. 3b, c, Supplementary Figure 2c, and
Supplementary Data 1). While no recurrent fusions were detec-
ted, multiple rearrangements targeted TP53 and RB1 (Fig. 4a, b),
which were predicted to result in out-of-frame fusion proteins or
loss of critical functional domains in the majority of cases. This
indicated that TP53 and RB1 are disrupted by a variety of genetic
mechanisms in LMS tumors. In accordance, careful examination
of exome data additionally revealed protein-damaging micro-
deletions (20–100 base pairs (bp)), inversions, and exon skipping

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02602-0

2 NATURE COMMUNICATIONS |  (2018) 9:144 |DOI: 10.1038/s41467-017-02602-0 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


events (Fig. 4c and Supplementary Figure 3a–c). Furthermore, we
identified three cases with pathogenic germline alterations
affecting TP53 (hemizygous loss, n = 1) or RB1 (mutation, n = 2).
Integration of SNVs, indels, CNAs, fusions, and microalterations

demonstrated biallelic disruption of TP53 and RB1 in 92 and 94%
of cases, respectively (Fig. 5a). Three tumors with wild-type RB1
displayed loss of CDKN2A expression and overexpression of
CCND1 as alternative mechanisms of RB1 suppression (Fig. 5b).
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Finally, we detected a single loss-of-function mutation in the
basic helix-loop-helix domain of MAX, previously described in
hereditary pheochromocytoma16, that was associated with over-
expression of CDK4 and CCND2 (Fig. 5b), possibly through
enhanced formation of MYC-MAX heterodimers activating the
CDK4 and CCND2 promoters or via disruption of the MAD-
MAX repressor complex17, 18. These data showed that inactiva-
tion of TP53 and RB1 is near-obligatory in LMS.

Whole-genome duplication in LMS. The variant allele fre-
quencies of SNVs and indels affecting TP53 and RB1 were con-
gruent with tumor purity, establishing TP53 and RB1 inactivation
as truncal events in LMS development (Fig. 5c). Further investi-
gation of allele-specific copy number profiles revealed that 27 of
49 cases had undergone whole-genome duplication (WGD),
resulting in an average ploidy close to 4 (Fig. 5a, d and Supple-
mentary Data 1). In most cases, only mutant TP53 and RB1 were
detectable irrespective of ploidy, suggesting that the respective
wild-type alleles had been lost before WGD. Accordingly, the
allele-specific copy number profiles for a primary tumor/metas-
tasis pair demonstrated that the former had acquired TP53 and
RB1 alterations with concomitant loss of wild-type chromosomes
17p and 13 (Fig. 5d). By comparison, the metastasis showed only
minor differences regarding mutations and fusion transcripts, but
had undergone WGD (Fig. 5d, Supplementary Figure 2c, and
Supplementary Data 1), implying that tetraploidization was a
progression event preceded by loss of wild-type TP53 and RB1.
These data again indicated that LMS is driven by a perturbed
tumor suppressor network (Fig. 5e), which gives rise to WGD and
gross genomic instability, thereby accelerating tumor evolution,
in the majority of cases19–21.

High frequency of ALT in LMS. To achieve replicative immor-
tality, approximately 85% of cancers re-activate TERT expres-
sion22. The remaining 15% maintain telomere length via a
telomerase-independent mechanism termed ALT, which appears
to be particularly prevalent in cells of mesenchymal origin23–25.
ALT has been correlated with loss of ATRX, a chromatin
remodeling factor that incorporates histone variant H3.3 into
telomeric and pericentromeric regions in complex with DAXX26–
28. Our finding of recurrent ATRX alterations (SNVs, indels,
CNAs; Fig. 1a, b and Supplementary Figure 1a) suggested that
ALT might be a common feature of LMS. We therefore tested 49
patient samples for the presence of C-circles, extrachromosomal
telomeric repeats that are hallmarks of ALT29. C-circles were
detected in 38 of 49 samples (78%; Fig. 6a and Supplementary
Data 1), the highest frequency of ALT reported to date for any
tumor entity30. ALT-positive cells also display extensive telomere
length heterogeneity, including the presence of very long telo-
meres31 and typically resulting in high telomere content. Quan-
titative PCR revealed a wide range of telomere content in both
ALT-positive and ALT-negative LMS tumors, but no correlation
between ALT status and telomere content, both absolute and
relative to normal controls, indicating that telomere content is not
a relevant marker for ALT in LMS (Fig. 6b). Since the frequency

of ALT considerably exceeded that of potentially deleterious
ATRX alterations (Figs. 1a, c and 6a, c), we investigated additional
genes from the TelNet database and observed that LMS tumors
are characterized by recurrent alterations in a broad spectrum of
telomere maintenance genes (Fig. 6c). Of these, deletions of RBL2
(P = 0.008) and SP100 (P = 0.02) showed the strongest association
with ALT positivity (P-values determined by Fisher exact test).
RBL2 has been shown to block ALT by interacting with RINT132.
SP100 has been implicated in ALT suppression by sequestering
the MRE11/RAD50/NBS complex and is a major component of
ALT-associated PML bodies33, 34. These data indicated that
mechanisms beyond ATRX loss account for the exceptionally
high frequency of ALT in LMS.

“BRCAness” as potentially actionable feature of LMS. Our
finding of frequent deletions targeting genes implicated in HRR of
DNA double-strand breaks (Fig. 2a), e.g. ATM, BRCA2, and
PTEN35–37, prompted us to inquire if LMS tumors show genomic
imprints of defective HRR, i.e. a “BRCAness” phenotype6, 38–40,
which confers sensitivity to DNA double-strand break-inducing
drugs, such as platinum derivatives, and poly(ADP-ribose)
polymerase (PARP) inhibitors41. We first interrogated genes that
have been described as synthetic lethal to PARP inhibition38, 42

and observed deleterious aberrations in multiple HRR compo-
nents, including PTEN (57%), BRCA2 (53%), ATM (22%),
CHEK1 (22%), XRCC3 (18%), CHEK2 (12%), BRCA1 (10%), and
RAD51 (10%), as well as in members of the Fanconi anemia
complementation groups, namely FANCA (27%) and FANCD2
(10%) (Fig. 7a). Next, we detected enrichment of five known
mutational signatures6 (Alexandrov-COSMIC (AC) 1: clock-like,
spontaneous deamination; AC3: associated with defective HRR;
AC5: clock-like, mechanism unknown; AC6 and AC26: asso-
ciated with mismatch repair (MMR) defects). Signature AC3
contributed to the mutational catalog in 98% of samples, and the
confidence interval of the exposure to AC3 excluded zero in 57%
of samples (Fig. 7b). Comparison of the signatures identified in
the LMS cohort against a background of 7042 cancer samples
(whole-genome sequencing, n = 507; whole-exome sequencing, n
= 6535)6 demonstrated significant enrichment of AC1 (P =
1.31×10−3), AC3 (P = 2.67×10−30), and AC26 (P = 9.28×10−41) in
LMS tumors (P-values determined by Fisher exact test followed
by Benjamini−Hochberg correction). Finally, clonogenic assays
demonstrated that LMS cell lines harboring aberrations of mul-
tiple genes that are synthetic lethal to PARP inhibition (Supple-
mentary Figure 4) responded to the PARP inhibitor olaparib in a
dose-dependent manner, an effect that was enhanced by a pulse
of cisplatin prior to continuous olaparib treatment (Fig. 7c).
These data showed that most LMS tumors exhibit phenotypic
traits of “BRCAness”, which might provide a rationale for
therapies that target defective HRR.

Discussion
This study represents a comprehensive analysis of the genomic
alterations that underlie the development of LMS, an aggressive
and difficult-to-treat malignancy for which no targeted therapy

Fig. 1Mutational landscape of adult LMS. a Frequency and type of mutations. Rows represent individual genes, columns represent individual tumors. Genes
are sorted according to frequency of SNVs/indels (left). Asterisks indicate significantly mutated genes according to MutSigCV. Bars depict the number of
SNVs/indels for individual tumors (top) and genes (right). Established cancer genes are shown in bold. Types of mutations and selected clinical features
are annotated according to the color codes (bottom). b Schematic representation of SNVs/indels in TP53, RB1, and ATRX. Protein domains are indicated
(Trans transactivation domain, SH3 Src homology 3-like domain, Tetra tetramerization domain, DUF3452 domain of unknown function, RB_A RB1-
associated protein domain A, RB_B RB1-associated protein domain B, RB_C RB1-associated protein domain C, EZH2-ID EZH2 interaction domain, SNF2 N
ter SNF2 family N-terminal domain, Hel helicase domain). c Top subnetworks from HotNet2 analysis of genes harboring SNVs/indels. MutSigCV P-values
(−log10) for individual genes are annotated according to the color code
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Fig. 2 Genomic imbalances in adult LMS. a Overall pattern of CNAs. Chromosomes are represented along the horizontal axis, frequencies of chromosomal
gains (red) and losses (blue) are represented along the vertical axis. Established cancer genes (black) and components of the CINSARC signature (blue)
affected by CNAs in at least 30% of cases are indicated. b GISTIC2.0 plot of recurrent focal gains (top) and losses (bottom). The green line indicates the
cut-off for significance (q= 0.25). c Read-depth plots of case LMS24 showing oscillating CNAs of chromosomes 3, 9, 15, and 17 (red dotted lines),
indicative of chromothripsis. Gray lines indicate centromeres. Mb megabase, chr chromosome
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Fig. 3 Transcriptomic characterization of adult LMS. a Unsupervised hierarchical clustering based on the top 100 differentially expressed genes showing
separation of tumors into three subgroups (SG1–3; dendrogram colors green, brown, and magenta). The heatmap displays normalized read count values for
individual genes, which were centered, scaled (z-score), and quantile-discretized. b Structural variant plots of fusion transcripts in three tumors identified
by TopHat2 and validated by RT-PCR (blue, intrachromosomal; red, interchromosomal) or visual inspection using Integrative Genomics Viewer (gray).
Numbers in parentheses indicate the number of fusions involving the respective gene. c Number of fusion events per chromosome (left), tumor (middle),
and gene (right). chr, chromosome
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exists. Our findings not only advance current insights into the
molecular basis of LMS, which are primarily based on lower-
resolution microarray analyses and targeted sequencing of selec-
ted cancer genes, but may also have tangible clinical implications.

We observed that widespread genomic imbalances, in parti-
cular chromosomal losses affecting tumor suppressor genes such
as TP53, RB1, and PTEN, are a hallmark of LMS, in keeping with
previous studies3, 43, 44. However, an unexpected finding in this
study was the very high frequency of biallelic TP53 and RB1
inactivation in LMS tumors. While it has been known that
patients with Li-Fraumeni syndrome or hereditary retino-
blastoma, which are associated with germline defects in TP53 and
RB1, respectively, have an increased risk for developing LMS as
secondary malignancy45, 46, the frequency of TP53 and RB1 dis-
ruption in sporadic LMS was reported to be in the range of 50%
or lower3, 43, 44. In our study, whole-exome and transcriptome
sequencing enabled the discovery that TP53 and RB1 are targeted
by diverse genetic mechanisms (SNVs, indels, CNAs, chromo-
somal rearrangements, and microalterations (e.g. novel deletions
affecting the TP53 transcription start site)) in more than 90% of
cases, establishing biallelic TP53 and RB1 inactivation as unifying
feature of LMS development. In addition to providing an
exhaustive picture of the tumor suppressor landscape of LMS, our
data identify chromothripsis and WGD, crucial events in the
pathogenesis of various cancers47, 48, as previously unrecognized
manifestations of genomic instability in this disease.

Our findings indicate that LMS cells primarily rely on ALT to
overcome replicative mortality. However, the high prevalence of
ALT in LMS (78% in our cohort) cannot be explained by the
frequency of potentially deleterious ATRX alterations observed by
us and others (49% and 16–26% of cases, respectively)4, 49, 50. In
conjunction with the continuously growing list of putative

telomere maintenance genes51, our comprehensive catalog of
genomic and transcriptomic alterations in LMS tumors provides
an opportunity to select novel candidate drivers of ALT, such as
RBL2 and SP100, for future functional and mechanistic
investigations.

Treatment of advanced-stage soft-tissue sarcoma, including
LMS, is difficult, and for more than 30 years, doxorubicin, ifos-
famide, and dacarbazine were the only active drugs in this setting.
Additional agents have been tested, including gemcitabine, tax-
anes, trabectedin, pazopanib, and eribulin. However, none has
proven superior to doxorubicin, and molecularly guided ther-
apeutic strategies remain elusive52. Very recent data indicate that
the anti-PDGFRA antibody olaratumab in combination with
doxorubicin may improve survival, but these results await con-
firmation from phase 3 clinical trials53. We have found that most
LMS tumors exhibit genomic “scarring” suggestive of impaired
HRR of DNA double-strand breaks, which might represent a
suitable target for therapeutic intervention through repositioning
of small-molecule PARP inhibitors38. Given that the concept of
“BRCAness” was primarily introduced in BRCA1/2-deficient
epithelial cancers, further mechanistic evaluation of the HRR
pathway and, most importantly, genomics-guided clinical trials in
LMS patients will be necessary to formally establish whether a
“BRCAness” phenotype confers sensitivity to these drugs as in
breast, ovarian, and prostate cancer. However, preclinical obser-
vations54 as well as preliminary data from a phase 1b trial of
olaparib and trabectedin in unselected patients with relapsed
bone and soft-tissue sarcomas (Grignani et al., ASCO Annual
Meeting, 2016) suggest that this might be the case.

Apart from defective HRR, our analysis revealed additional
leads for investigations into genetic alterations or deregulated
cellular processes that might be exploited for therapeutic benefit.

1

2

3

4

5

6

7

8910

11

12
13

14

15

16

17
18

19

20
21

22
X Y

TNFSF12

TP53

FHOD3

FLNA

TECRG1

TP53

1

2

3

4

5

6

7

89

10

11

12
13

14

15

16

17

18
19

20
21

22
X Y

C
S

M
D

2
H

O
R

M
A

D
1

KCTD20

Z
N

F
37

A

ATP8A2

EPSTI1
DLEU1

DIAPH3 (2)
DNAJC3 (2)

FMN1

PTOV1−AS1

RB
1

RB1

RB1ATP8A2

chr13:48,936,033–48,940,375

chr13

chr13:26,271,145–26,275,487

chr13

TP53TCERG1

chr17:7,589,422–7,592,671

chr17

chr5:145,843,633–145,846,882

chr5

RB1: fusion with ATP8A2
LMS45_TS

TP53: translocation and fusion with TCERG1
LMS44_TS

Breakpoint Breakpoint

Breakpoint Breakpoint

TP53

RB1

5′-UTR e10 e11
e4

chr17p13.1
Intergenic region
chr17q21.31

e2
e12

e17 e19

i18 i19

e24

Microdeletion

Intragenic inversion Exon skipping

Wild-type

Wild-type

Distal inversion

e

a b

c

Fig. 4 Genetic lesions targeting TP53 and RB1 in adult LMS. a Structural variant plots of all fusion transcripts involving TP53 and RB1 detected in 37 tumors. b
Interchromosomal rearrangement resulting in a non-functional TP53-TCERG1 fusion transcript in case LMS44 (top) and intrachromosomal rearrangement
resulting in a non-functional RB1-ATP8A2 fusion transcript in case LMS45 (bottom). TS transcriptome sequencing, chr chromosome. c Schematic
representation of different genetic lesions targeting TP53 and RB1. e exon, i intron, chr chromosome, UTR untranslated region

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02602-0 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:144 |DOI: 10.1038/s41467-017-02602-0 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


For example, blockade of the PI3K-AKT-mTOR axis might be
effective in LMS tumors (57% in our cohort) harboring PTEN
alterations55, 56. Furthermore, it has been shown that ALT ren-
ders cancer cells sensitive to ATR inhibitors57. Amplifications of
TOP3A (28%), BLM (12%), and DNMT1 (12%) may provide a
basis for the combinatorial use of the respective inhibitors with

chemotherapeutics or other targeted agents58–60. A recent study
reported that the BLM DNA helicase drives an aggravated ALT
phenotype in the absence of FANCD2 and FANCA61, suggesting
that BLM inhibition59 may provide a means to target FANCD2-
and FANCA-deficient LMS cells. Finally, DNA methyltransferase
inhibitors enhance the cytotoxic effect of PARP inhibition in
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cancer cells62, suggesting a mechanism-based strategy for com-
bination therapy of LMS tumors with BRCAness, a subset of
which are characterized by DNMT1 copy number gains that may
increase PARP binding to chromatin.

In summary, this comprehensive genomic and transcriptomic
analysis has unveiled that LMS is characterized by substantial
mutational heterogeneity, genomic instability, universal inacti-
vation of TP53 and RB1, and frequent WGD. Furthermore, we
have established that most LMS tumors rely on ALT to escape
replicative senescence, and identified recurrent alterations in a
broad spectrum of telomere maintenance genes. Finally, our
findings uncover “BRCAness” as potentially actionable feature of
LMS tumors, and provide a rich resource for guiding future
investigations into the mechanisms underlying LMS development
and the design of novel therapeutic strategies.

Methods
Patient samples. For whole-exome and transcriptome sequencing, fresh-frozen
tumor specimens and matched normal control samples (Supplementary Data 1)
were collected from 49 adult patients who had been diagnosed with LMS according
to World Health Organization criteria at four German cancer centers (NCT Hei-
delberg and Heidelberg University Hospital, Heidelberg; Mannheim University
Medical Center, Mannheim; West German Cancer Center, Essen; Eberhard Karls
University Hospital, Tübingen). Specimens were obtained from different anatomic
sites, and the cohort included both treatment-naïve and previously treated patients
(Supplementary Data 1). Samples were pseudonymized, and tumor histology and
cellularity were assessed at the Institute of Pathology, Heidelberg University
Hospital, prior to further processing. Twelve cases were excluded from tran-
scriptome sequencing due to insufficient quantity and/or quality of RNA. Patient
samples were obtained under protocol S-206/2011, approved by the Ethics Com-
mittee of Heidelberg University, with written informed consent from all human
participants. This study was conducted in accordance with the Declaration of
Helsinki.

Cell lines. SK-UT-1, SK-UT-1B, and MES-SA cells were purchased from American
Type Culture Collection. SK-LMS-1 cells were provided by Sebastian Bauer (West
German Cancer Center, Essen). Cell line identity and purity were verified using the
Multiplex Cell Authentication and Contamination Tests (Multiplexion). All cell
lines were regularly tested for mycoplasma contamination using the Venor GeM
Mycoplasma Detection Kit (Minerva). Cell lines were cultured as follows: SK-LMS-
1 in RPMI-1640 (Life Technologies), 15% FBS; SK-UT-1 and SK-UT-1B in MEM
(Life Technologies), 10% FBS; MES-SA in McCoy’s medium, 10% FBS. All media
were supplemented with 1% penicillin/streptomycin and 1% L-glutamine
(Biochrom).

Isolation of analytes. DNA and RNA from tumor specimens and DNA from
control samples were isolated at the central DKFZ-HIPO Sample Processing
Laboratory using the AllPrep DNA/RNA/Protein Mini Kit (Qiagen), followed by
quality control and quantification using a Qubit 2.0 Fluorometer (Invitrogen) and a
2100 Bioanalyzer system (Agilent).

Whole-exome sequencing. Exome capturing was performed using SureSelect
Human All Exon V5+UTRs in-solution capture reagents (Agilent). Briefly, 1.5 μg
genomic DNA were fragmented to 150–200 bp insert size with a Covaris S2 device,
and 250 ng of Illumina adapter-containing libraries were hybridized with exome

baits at 65 °C for 16 h. Paired-end sequencing (2×101 bp) was carried out with a
HiSeq 2500 instrument (Illumina).

Mapping of whole-exome sequencing data. Reads were mapped to the 1000
Genomes Phase 2 assembly of the Genome Reference Consortium human genome
(build 37, version hs37d5) using BWA (version 0.6.2) with default parameters and
maximum insert size set to 1000 bp. BAM files were sorted with SAMtools (version
0.1.19), and duplicates were marked with Picard tools (version 1.90). Sequencing
coverages and additional quality parameters are summarized in Supplementary
Data 1.

Whole-genome sequencing. Whole-genome sequencing libraries were prepared
using the TrueSeq Nano Library Preparation Kit (Illumina) using the manu-
facturer’s instructions. Paired-end sequencing (2×151 bp) was carried out with a
HiSeq X instrument (Illumina).

Mapping of whole-genome sequencing data. Reads were mapped to the 1000
Genomes Phase 2 assembly of the Genome Reference Consortium human genome
(build 37, version hs37d5) using BWA mem (version 0.7.8) with option -T 0. BAM
files were sorted with SAMtools (version 0.1.19)63, and duplicates were marked
with Picard tools (version 1.125) using default parameters.

Transcriptome sequencing. RNA sequencing libraries were prepared using the
TruSeq RNA Sample Preparation Kit v2 (Illumina), normalized to 10 nM, pooled to
11-plexes, and clustered on a cBot system (Illumina) to a final concentration of 10
pM with a spike-in of 1% PhiX Control v3 (Illumina). Paired-end sequencing
(2×101 bp) was carried out with a HiSeq 2000 instrument (Illumina).

Mapping of transcriptome sequencing data. RNA sequencing reads were
mapped with STAR (version 2.3.0e)64. For building the index, the 1000 Genomes
reference sequence with GENCODE version 17 transcript annotations was used.
For alignment, the following parameters were used: alignIntronMax 500,000,
alignMatesGapMax 500,000, outSAMunmapped Within, outFilterMultimapNmax
1, outFilterMismatchNmax 3, outFilterMismatchNoverLmax 0.3, sjdbOverhang 50,
chimSegmentMin 15, chimScoreMin 1, chimScoreJunctionNonGTAG 0, chim-
JunctionOverhangMin 15. The output was converted to sorted BAM files with
SAMtools, and duplicates were marked with Picard tools (version 1.90).

Detection of SNVs and small indels. Somatic SNVs were detected from matched
tumor/normal pairs with our in-house analysis pipeline based on SAMtools mpi-
leup and bcftools with parameter adjustments and using heuristic filtering as
previously described65. In brief, SAMtools (version 0.1.19) mpileup was called on
the tumor BAM file with parameters RE -q 20 -ug to consider only reads with a
minimum mapping quality of 20 and bases with a minimum base quality of 13. The
output was piped to BCFtools (version 0.1.19) view, which, by using parameters
-vcgN -p 2.0, reports all positions containing at least one high-quality non-refer-
ence base. From these initial SNV calls, the ones with at least five variant reads and
a variant allele frequency of at least 5% were retained. Any variant call that was
supported by reads from only one strand was discarded if one of the Illumina-
specific error profiles occurred in a sequence context of ±10 bases around the SNV.
For categorizing variants as germline or somatic, a pileup of the bases in the
matched control sample was generated for each SNV position by SAMtools mpi-
leup with parameters -Q 0 -q 1, considering uniquely mapping reads and not
putting a restriction to base quality. For high-confidence somatic SNVs, the cov-
erage at the position in the control must be at least ten, and less than 1/30 of the
control bases may support the variant observed in the tumor. Variants that were
located in regions of low mappability or overlapped with entries of the

Fig. 5 Biallelic inactivation of TP53 and RB1 and whole-genome duplication (WGD) in adult LMS. a Combined analysis of genetic lesions and allele-specific
copy number showing frequent biallelic inactivation of TP53 and RB1. In the top panels, samples are plotted from left to right based on their copy number
composition, and genetic lesions specific for the A and B alleles as well as the presence or absence of WGD are annotated according to the color code.
Asterisks indicate cases with either loss of CDKN2A expression in combination with CCND1 overexpression or MAX mutation. In the bottom panels, allele-
specific integral copy numbers are plotted. Cases with retention of a single allele are assigned to the loss-of-heterozygosity (LOH) group, cases with one or
more alleles derived from the same parental allele are assigned to the copy number-neutral (CNN) or higher-ploidy LOH groups, and cases with different
combinations of maternal and paternal alleles are assigned to the normal or biallelic alteration group, respectively. TS transcriptome sequencing. b Scatter
plots showing expression of CDKN2A and CCND1 in cases with wild-type and aberrant RB1 (left) and expression of CDK4 and CCND2 in cases with wild-type
and mutant MAX (right). FPKM fragments per kilobase of transcript per million mapped reads. c Scatter plots showing congruency of TP53 and RB1 variant
allele frequencies with tumor purity as detected by allele-specific copy number analysis. d Allele-specific copy-number profiles for a primary tumor/
metastasis pair showing absence of WGD in the primary tumor (top) and presence of WGD in the metastasis (bottom). Chromosomes are represented
along the horizontal axis, copy numbers are indicated along the vertical axis. The purple line indicates the total allele-specific copy number. The blue line
indicates the minor allele-specific copy number. e Genes involved in cell cycle regulation or PI3K-AKT-mTOR signaling recurrently affected by genetic
alterations in LMS tumors. Blue and red boxes denote genes with inactivating and activating lesions, respectively. Percentage values indicate the collective
frequencies of SNVs, indels, CNAs, fusions, microalterations, and aberrant expression affecting the respective genes
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Fig. 6 High frequency of alternative lengthening of telomeres (ALT) in adult LMS. a Detection of C-circles in LMS tumors and control cell lines (U2OS,
positive control; HeLa, negative control). Shown are test samples (top row) and control samples (bottom row). ALT-positive samples, as inferred from the
enriched C-circle signal, are indicated in red. ALT-negative samples are indicated in blue. +pol, with polymerase; −pol, without polymerase. bMeasurement
of telomere content in LMS tumors. Telomere quantitative PCR was performed on tumor and matched control samples, and telomere repeat signals were
normalized to a single-copy gene (36B4; T/S ratio). Shown are the telomere contents of tumor samples relative to those of control samples (left) and the
absolute telomere contents of tumor samples (right). c Recurrent alterations in telomerase maintenance genes in LMS tumors. Rows represent individual
genes, columns represent individual tumors. Genes are sorted according to frequency of SNVs, indels, and CNAs (left). Bars depict the number of
alterations for individual tumors (top) and genes (right). Types of alterations and ALT status are annotated according to the color codes (bottom). UTR
untranslated region; n.d. not determined
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hiSeqDepthTopPt1Pct track from the UCSC Genome Browser, Encode DAC
Blacklisted Regions, or Duke Excluded Regions were excluded. High-confidence
SNVs were also not allowed to overlap with any two of the following features at the
same time: tandem repeats, simple repeats, low complexity, satellite repeats, or
segmental duplications. After annotation with RefSeq (version September 2013)

using ANNOVAR, somatic, non-silent coding variants of high confidence were
selected except for the analysis of mutational signatures, where all high confidence,
including non-coding and silent, somatic variants were used. Small indels were
identified by Platypus (version 0.5.2; parameters: genIndels = 1, genSNPs = 0,
ploidy = 2, nIndividuals = 2) by providing matched tumor and control BAM files.
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To be considered high confidence, somatic calls (control genotype 0/0) were
required to either have the Platypus filter flag PASS or pass custom filters allowing
for low variant frequency using a scoring scheme. Candidates with the badReads
flag, alleleBias, or strandBias were discarded if the variant allele frequency was
<10%. Additionally, combinations of Platypus non-PASS filter flags, bad quality
values, low genotype quality, very low variant counts in the tumor, and presence of
variant reads in the control were not tolerated. Indels were annotated with
ANNOVAR, and somatic high-confidence indels falling into a coding sequence or
splice site were extracted. SNVs and indels in LMS cell lines were called without
matched control. In addition to filters and annotations described above, calls were
further filtered for variants found in ExAC (version 0.3.1; http://exac.
broadinstitute.org) with allele frequencies >0.0001, in the 1000 Genomes Phase 3
of the Genome Reference Consortium human genome with allele frequencies
>0.001, and in our in-house control data set (n = 655) in more than 5% of the
samples. Oncoprints integrating information on SNVs, indels, and CNAs were
generated using the R package ComplexHeatmap66.

Supervised analysis of mutational signatures. Using the package YAPSA (Yet
Another Package for Signature Analysis)67, a linear combination decomposition of
the mutational catalog with predefined signatures from the COSMIC database
(http://cancer.sanger.ac.uk/cosmic/signatures, downloaded in June 2016) was
computed by non-negative least squares (NNLS). Prior to decomposition, the
mutational catalog was corrected for different occurrences of the triplet motifs
between the whole genome and the target capture regions used for whole-exome
sequencing (function normalizeMotifs_otherRownames() from YAPSA). To
increase specificity, the NNLS algorithm was applied twice; after the first execution,
only those signatures whose exposures, i.e. contributions in the linear combination,
were higher than a certain cut-off were kept, and the NNLS was run again with the
reduced set of signatures. As the detectability of different signatures may vary, the
following signature-specific cut-offs were determined in a random operator char-
acteristic analysis using publicly available data on mutational catalogs of 7042
cancers (whole-genome sequencing, n = 507; whole-exome sequencing, 6535)6 and
mutational signatures from COSMIC: AC1, 0; AC2, 0.03404847; AC3, 0.139839;
AC4, 0.02281439; AC5, 0; AC6, 0.003660315; AC7, 0.02841319; AC8, 0.1870989;
AC9, 0.0953648; AC10, 0.0164065; AC11, 0.08238725; AC12, 0.1920715; AC13,
0.03769936; AC14, 0.03080224; AC15, 0.03182855; AC16, 0.3553548; AC17,
0.004075963; AC18, 0.2692715; AC19, 0.04038686; AC20, 0.05066134; AC21,
0.04219805; AC22, 0.03908793; AC23, 0.03900049; AC24, 0.04254174; AC25,
0.02448377; AC26, 0.02830282; AC27, 0.02223076; AC28, 0.0315642; AC29,
0.07392201; AC30, 0.06332517. The cut-offs are also stored in the R package
YAPSA and can be retrieved with the following R code: library(YAPSA), data
(cutoffs), cutoffCosmicValid_rel_df[6,]. Confidence intervals were computed using
the concept of profile likelihoods. Likelihoods were computed from the distribution
of the residues after NNLS decomposition (initial model of the data). To compute
the confidence interval of a given signature, the exposure to this signature was
perturbed and fixed as compared to the initial model, and the exposures to the
remaining signatures computed again by NNLS, yielding an alternative model with
one degree of freedom less. Likelihoods were again computed from the distribution
of the residuals of the alternative model. Next, a likelihood ratio test for the log-
likelihoods of the initial and alternative models was computed, yielding a test
statistic and a P-value for the perturbation. To compute the limits of 95% con-
fidence intervals, the perturbations corresponding to P-values of 0.05/2 = 0.025
(two-sided likelihood ratio test) were computed by a Gauss−Newton method (R
package pracma). The set of mutational signatures extracted from the LMS cohort
was compared to the set of mutational signatures extracted from a background of
7042 cancer samples (whole-genome sequencing, n = 507; whole-exome sequen-
cing, n = 6535)6 by Fisher exact tests and subsequent correction for multiple
comparisons according to the Benjamini−Hochberg method.

Detection of germline variants. For TP53 and RB1, non-silent coding variants
and splice-site mutations with read support in the matched normal control were
filtered for single-nucleotide polymorphisms (SNPs) recorded in the 1000 Gen-
omes Phase 2 assembly of the Genome Reference Consortium human genome with
allele frequencies >0.001 or in ExAC (version 0.3.1) with allele frequencies >0.0001
and were visually inspected using Integrative Genomics Viewer to rule out
sequencing artifacts.

Identification of driver mutations. Variant Call Format files were processed in
combination with the whole-exome sequencing capture design BED file using an

in-house pipeline that determines the recurrence of gene-specific mutations and
scores the different possibilities of mutations per gene. Average gene expression
levels were determined based on the previously calculated fragments per kilobase of
transcript per million mapped reads values, which were calculated using Cuf-
flinks68. The resulting files were used as input for MutSigCV7 and processed using
default parameters. P-values were corrected for multiple hypothesis testing using
the Benjamini−Hochberg procedure, and genes with q< 0.01 were considered
significantly mutated.

Identification of significantly mutated gene networks. Network analysis was
performed using HotNet2 (version 1.0.1)9, and the global interaction network
(HINT+HI2012) was retrieved from the HotNet2 website (http://compbio-
research.cs.brown.edu/pancancer/hotnet2). For each node (gene) in the global
network, the −log10 P-value from MutSigCV served as the initial heat, which
diffuses to adjacent nodes through edges (known interactions) with a weight δ>
0.008450441. Areas accumulating more heat were identified as subnetworks, and
significantly mutated subnetworks were determined based on a two-stage multiple
hypothesis test69 and 100 permutations of the global interaction network. Sig-
nificant subnetworks (P< 0.05) were visualized with Cytoscape (version 2.6.2).

Detection of DNA CNAs. For LMS patient samples, copy numbers were estimated
from exome data using read-depth plots and an in-house pipeline using VarScan2
copynumber and copyCaller modules. Regions were filtered for unmappable
genomic stretches, merged by requiring at least 70 markers per called copy number
event, and annotated with RefSeq genes using BEDTools. High-resolution CNA
profiles were generated with CNVsvd (manuscript in preparation), which deter-
mines the total number of fragments from non-overlapping 250-bp windows based
on the whole-exome sequencing capture design. Systematic variance introduced by
sequence context or sequencing technology bias was captured through analysis of a
reference data set, i.e. all normal controls with sufficient quality statistics, and these
estimated local variance components were subsequently used to attenuate sys-
tematic variance in all sequenced specimens, including controls. Finally, normal-
ized fragment count statistics were used to estimate CNA profiles. Segmentation
was performed with PSCBS70, segmentation files and windows used for CNA
estimation were converted to a compound segmentation file and marker files that
were used as input for GISTIC2.013, and processing was performed with default
parameters. For LMS cell lines, copy numbers were estimated from whole-genome
sequencing data using allele-specific copy number estimation from sequencing
(ACEseq, manuscript in preparation), which employs tumor coverage and BAF and
also estimates tumor cell content and ploidy. Allele frequencies were obtained
during pre-processing of whole-genome sequencing data for all SNPs recorded in
dbSNP (build 135), and positions with BAF values between 0.1 and 0.9 in the
tumor were assumed to be heterozygous in the germline. To improve sensitivity for
the detection of allelic imbalances, heterozygous and homozygous SNPs were
phased with IMPUTE (version 2)71. In addition, the coverage for 10-kilobase (kb)
windows with sufficient mapping quality and read density in an in-house control
was recorded for the tumor and corrected for GC content- and replication timing-
dependent coverage bias. The genome was segmented using the R package
PSCBS70, and segments were clustered according to coverage ratios and BAF values
using k-means clustering. The R package mclust was used to determine the optimal
number of clusters based on the Bayesian information criterion. Small segments
(<9 kb) were attached to the more similar neighbor. Finally, tumor cell content and
ploidy of a sample were estimated by fitting different tumor cell content and ploidy
combinations to the data. Segments with balanced BAF values were fitted to even-
numbered copy number states, whereas unbalanced segments could also be fitted to
uneven copy numbers. Finally, estimated tumor cell content and ploidy values were
used to compute the total and allele-specific copy number for each segment.

Analysis of allele-specific copy number and tumor purity. Allele-specific copy
number profiles and tumor purity of LMS patient samples were analyzed with
ASCAT72 and Sequenza73. Input files for ASCAT were generated using an in-house
algorithm that extracts fragment counts from tumor and matched normal BAM
files at positions listed in dbSNP (build 137), and only sufficiently covered regions
with >10 fragments and fragments with an alignment score >30 were considered.
For further analysis, SNPs heterozygous in normal samples were used, and allele-
specific copy number profiles for matched tumor samples were determined with
standard parameters. For Sequenza, standard guidelines as specified in the refer-
ence manual were used. In the majority of cases, allele-specific copy numbers and
tumor purity estimates were nearly congruent between ASCAT and Sequenza. For

Fig. 7 Evidence for BRCAness in adult LMS. a Alterations in genes reported as synthetic lethal to PARP inhibition. Rows represent individual genes, columns
represent individual tumors. Genes are sorted according to frequency of SNVs, indels, and CNAs (left). Bars depict the number of alterations for individual
tumors (top) and genes (right). Types of alterations and treatment history are annotated according to the color codes (bottom). UTR untranslated region. b
Contribution of mutational signatures to the overall mutational load in LMS tumors. Each bar represents the number of SNVs explained by the respective
mutational signature in an individual tumor. Error bars represent 95% confidence intervals. AC Alexandrov-COSMIC. c Clonogenic assays showing dose-
dependent sensitivity of LMS cell lines to continuous olaparib treatment (1–5 µM) with or without prior exposure to a 2-h pulse of cisplatin (5 µM). UT
untreated
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the remaining cases, optimal allele-specific copy number profiles were selected on
the basis of tumor purity estimates provided by the pathologist and by comparing
tumor purity estimates to the mutations with the most dominant variant allele
frequencies, which frequently included alterations in TP53. WGD was determined
by taking into account the estimated ploidy and the presence of two or multiple
copies of most parental-specific chromosomes.

Detection of chromothripsis. Copy number state profiling of LMS tumors based
on exome data to detect the alternating copy number states that are characteristic
for chromothripsis was performed with the R package cn.MOPS (version 1.20.0)74

using several exome-specific functions and modifications. The getSegmen-
tReadCountFromBAM function was used in paired mode within enrichment of kit-
specific target regions, and only properly paired reads with a mapping quality ≥20
were used for counting and duplicate reads removed. Tumors and control samples
were compared using the referencecn.mops function adjusted with parameters
from the exomecn.mops function and using the DNAcopy algorithm for seg-
mentation. In addition, the obtained referencecn.mops log2 ratios were corrected to
account for whole-chromosome gains and losses by shifting the ratio according to
the proportion of total reads per chromosome related to the normal sample. Copy
number plots with corrected log2 ratios were used for chromothripsis inference
based on previously described criteria75. The rationale for adding a more con-
servative cut-off was that the number of copy number switches should be con-
sidered in relation to the size of the affected region, as it is more likely to observe
ten copy number switches by chance on chromosome 1 than on chromosome 22
due to the size difference. Briefly, copy number plots were evaluated by counting
switches between copy number states per chromosome independently by two
researchers. The main criterion for calling chromothripsis was that the ratio of the
number of alternating copy number state switches and the length of the affected
region on an individual chromosome in Mb was higher than 0.2, which corre-
sponds to at least ten alternating switches within 50Mb. In this study, the mini-
mum number of switches required for calling chromothripsis was set to 6, which
should then have occurred within 30Mb or less to satisfy the ≥0.2 cut-off.

Analysis of transcriptome sequencing data. After mapping of transcriptome
data as described above, expression levels were determined per gene and sample as
RPKM using RefSeq as gene model. For each gene, overlapping annotated exons
from all transcript variants were merged into non-redundant exon units with a
custom Perl script. Non-duplicate reads with mapping quality >0 were counted for
all exon units with coverageBed from the BEDtools package76. Read counts were
summarized per gene and divided by the combined length of its exon units (in kb),
and the total number of reads (in millions) was counted by coverageBed. HTSeq-
count (version 0.6.0)77 was used to generate read count data at the exon level using
a minimum mapping score of 1 and intersection non-empty mode and GENCODE
version 17 as gene model. Size factor and dispersion estimation were calculated for
raw count data before performing Wald statistics using DESeq278. Regularized
logarithm transformation was used for visualization and clustering of read count
data. Unsupervised hierarchical clustering was performed using the 100 most
variable genes. Normalized read count values for individual genes were centered
and scaled (z-score), and quantile discretization was performed. Complete-linkage
analysis with Euclidean distance measure was used for clustering. The heatmap was
generated using the R package pheatmap. Principal component analysis was per-
formed using singular value decomposition (prcomp) on the 1000 most variable
genes to examine the co-variances between samples. Somatic SNVs and indels were
annotated with RNA information by generating a pileup of the RNA BAM file
using SAMtools. Variants were considered expressed if they were present in at least
one high-quality RNA read. Fusion transcripts were determined using the TopHat2
post-alignment pipeline79, and candidates with a score >300 were selected for
further analysis. Circos plots were drawn with the R package OmicCircos.

Validation of fusion transcripts. Fusion transcripts were validated using RT-PCR
and Sanger sequencing. RNA was reverse-transcribed using the High-Capacity
cDNA Reverse Transcription Kit (Applied Biosystems). Breakpoint-spanning pri-
mers were designed manually and examined for secondary structures using mfold
and off-target binding using Primer-BLAST. Melting temperatures of primers were
calculated using the thermodynamic parameters of SantaLucia. Amplifications
were carried out using Taq DNA Polymerase (Qiagen) according to the manu-
facturer’s instructions. PCR products were visualized in 1% agarose gels and
purified using the QIAquick PCR Purification Kit or the QIAquick Gel Extraction
Kit (Qiagen). Direct sequencing was performed with the forward or reverse primer
of the respective amplification.

C-circle analysis. C-circle analysis was performed as described previously29.
Briefly, 30 ng genomic DNA from tumor samples was incubated with 1 x Φ29
Buffer, 0.2 mg/ml bovine serum albumin (BSA), 0.1% (v/v) Tween 20, 1 mM of each
deoxyadenosine triphosphate (dATP), deoxyguanosine triphosphate (dGTP) and
thymidine triphosphate (dTTP) , and with or without 7.5 U Φ29 DNA polymerase
for 8 h at 30 °C, followed by inactivation for 20 min at 65 °C. After addition of 2x
SSC, the DNA was dot-blotted with a 96-well dot blotter (Bio-Rad) onto a nylon
membrane (Carl Roth), which was dried immediately and baked for 20 min at 120 °
C. Hybridization, wash steps, and development were performed using the

TeloTAGGG Telomere Length Assay Kit (Roche) according to the manufacturer’s
instructions. Chemiluminescent signals of amplified C-circles were detected with a
ChemiDoc MP Imaging System (Bio-Rad). Non-saturated exposures were used for
evaluation, and tumor samples were classified as ALT-positive when the signal
intensity of the complete reaction was at least twofold higher than that of the
control without polymerase and at least threefold higher than the background
intensity.

Telomere quantitative PCR. Telomere quantitative PCR was performed as
described previously80. Briefly, 10 ng DNA from tumor or control samples was
added to 1 µl LightCycler 480 SYBR Green I Master mix (Roche) and 500 nM of
each forward and reverse primer in a 10 µl reaction. Primer sequences were as
follows: Telomere forward: 5′-CGG TTT GTT TGG GTT TGG GTT TGG GTT
TGG GTT TGG GTT-3′; Telomere reverse: 5′-GGC TTG CCT TAC CCT TAC
CCT TAC CCT TAC CCT TAC CCT-3′; 36B4 forward: 5′-AGC AAG TGG GAA
GGT GTA ATC C-3′; 36B4 reverse: 5′-CCC ATT CTA TCA TCA ACG GGT ACA
A-3′. PCR conditions were as follows: 10 min at 95 °C, 40 cycles of 15 s at 95 °C and
60 s at 60 °C. For each tumor and control sample, a T/S ratio (telomere repeat
signals normalized to a single copy gene (36B4)) was determined, and the T/S ratios
of tumor samples were divided by those of matched control samples. The calcu-
lated log2 ratios represent the increase or decrease in telomere content in the tumor
sample compared to the control sample.

Clonogenic assays. LMS cell lines (SK-LMS-1, SK-UT-1, MES-SA, 1×103; SK-UT-
1B, 2×103) were seeded in six-well plates, and treatment with dimethyl sulfoxide
(DMSO) or olaparib (1–5 µM; Selleck) was initiated 24 h after seeding and con-
tinued for 10 days, with drug replenishment and medium change every 2 days.
Pretreatment with cisplatin (5 µM; Selleck) was performed for 2 h. Thereafter, cells
were washed with phosphate buffered saline (PBS) and incubated with DMSO or
olaparib as described above. Following drug treatment, cells were fixed with chilled
methanol for 10 min, stained with 0.5% crystal violet in 25% methanol for 15 min,
and photographed after overnight drying.

Data availability. Sequencing data were deposited in the European Genome-
phenome Archive under accession EGAS00001002437.
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Supplementary Information 

 
Supplementary Figure 1 | Genomic imbalances in adult LMS. 

a Genomic imbalances affecting frequently mutated genes in adult LMS. Rows represent individual genes, columns represent 

individual tumors. Genes are sorted according to frequency of SNVs, indels, and CNAs (left). Asterisks indicate significantly  

mutated genes according to MutSigCV. Bars depict the number of alterations for individual tumors (top) and genes (right). 
Established cancer genes are shown in bold. Types of mutations are annotated according to the color code. b Heatmap of 

genomic gains (red) and losses (blue) for each tumor (horizontal axis) by chromosomal location (vertical axis). Chr, chromosome. 



 
Supplementary Figure 2 | Transcriptomic characterization of adult LMS. 

a Principal component (PC) analysis of gene expression profiles from 37 tumors showing separation into three distinct clusters 
according to values for PC1 (variance, 15.5%; horizontal axis) and PC2 (variance, 7.5%; vertical axis). b Column scatter plots 

showing expression of ARL4C, CASQ2, and LMOD1 in LMS subgroup 2 and 3 samples. Statistical significance was assessed using 

an unpaired t-test. c Structural variant plots of fusion transcripts detected in a primary LMS tumor (left) and a corresponding 
metastasis (right). 



    
 
Supplementary Figure 3 | Genetic lesions targeting TP53 and RB1 in adult LMS. 

a Microdeletion affecting the TP53 transcription start site in case LMS35. b Pericentric inversion of chromosome 17 disrupting 

TP53 in case ULMS02. c RB1 splice-site mutation resulting in exon skipping in case LMS37.  UTR, untranslated region; WES, 

whole-exome sequencing; TS, transcriptome sequencing.  

 

 

 



 
Supplementary Figure 4 | Whole-genome sequencing of LMS cell lines identifies alterations in genes reported to be synthetic 

lethal to PARP inhibition. 

Rows represent individual genes, columns represent individual cell lines. Genes are sorted according to frequency of SNVs, 
indels, and CNAs (left). Bars depict the number alterations for individual cell lines (top) and genes (right). Types of alterations  

are annotated according to the color code (bottom).  
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